Nobel da Química 2017

Ontem foi atribuído o prémio Nobel da Física a Rainer Weiss,  Barry C. Barish e a  Kip S. Thorne, pela sua contribuição decisiva na deteção e observação das ondas gravitacionais. Podem saber um pouco mais sobre as ondas gravitacionais aqui. Só uma curiosidade: Kip S. Thorne foi um dos principais consultares científicos do filme Interstellar! Aconselho a leitura deste texto “A Ficção Científica a ajudar a Ciência“.

Hoje foi atribuído o prémio Nobel da Química a Jacques Dubochet, investigador na Universidade de Lausanne (Suíça), Joachim Frank, investigador da Universidade Columbia (Nova Iorque) e Richard Henderson, investigador do Laboratório de Biologia Molecular do Conselho de Investigação Médica (Cambridge, Reino Unido). Estes 3 investigadores deram um relevante contributo para o desenvolvimento  da microscopia crioeletrónica, uma técnica que permite ver estruturas de biomoléculas em solução.

22154205_10154994374844103_8723502334424256905_n

 

proteina
Diferenças na observação de uma proteína antes e depois de 2013.

Com esta técnica poderá se conseguir conhecer a estrutura celular,  de maneira a aplicar à saúde. Conhecer a estrutura das proteínas envolvidas nas doenças humanas ou produzidas pelos agentes patogénicos (causadores de doenças) pode permitir criar fármacos que sejam mais eficazes no ataque a essas proteínas.

A título de curiosidade, o Prémio Nobel da Química em 2014, também foi para uma técnica de microscopia.

 

Anúncios

Nobel da Medicina e Fisiologia 2017

Três investigadores americanos foram hoje distinguidos com o Nobel de Medicina pelo seu estudo sobre os mecanismos moleculares que determinam os nossos ritmos biológicos.

Unknown.jpg

Vale a pena ler esta entrevista de Diogo Pimentel é um investigador português na Universidade de Oxford, ao Público. On line aqui.

Uma Perspectiva Diferente de uma Aurora Boreal

As auroras boreais são fenómenos de luzes fantásticos que ocorrem no Hemisfério Norte e que nos levam a viajar milhares de quilómetros para termos uma experiência única e podermos observá-las.

Contudo, a aurora boreal, tal como tudo no Mundo, tal também pode ser explicado cientificamente.

A temperatura na superfície do Sol é de milhões de graus Celsius. A tal temperatura, as colisões entre moléculas de gás são frequentes e muitas vezes explosivas. Assim, os eletrões e os protões são lançados na atmosfera e escapam através de brechas no campo magnético. As partículas são largamente desviadas pelo campo magnético da Terra, mas este é mais fraco junto aos pólos, fazendo com que algumas partículas entre na atmosfera terrestre. Estas colidem com partículas de gás e emitem luzes com diferentes cores. Tal pode ser visto nesta imagem:

aurora boreaç
Imagem proveniente do site EarthSky em EarthSky

As variações de cor que podem ser observadas dependem dos diferentes tipos de partículas de gás que colidem:

– As luzes verde amarelo-pálido são produzidas por moléculas de oxigénio localizadas a cerca de 10 km da Terra;

– As luzes vermelhas são produzidas por moléculas de oxigénio de alta altitude a cerca de 320 km da Terra;

– O azoto produz luzes púrpuras.

Certo é que a maior parte de nós já observou uma aurora boreal ou vivo ou viu vídeos e/ou imagens de tal. Mas e se as pudéssemos ver da estação espacial e viajar dentro delas?

Evolução de espécies

Ao longo de muitos milhões de anos, pequenas diferenças hereditárias entre populações de organismos conduziram ao aparecimento de espécies novas. Cada organismo possui uma pequena diferença e, ocasionalmente, uma delas permite aos organismos que a transportam, produzir mais descendência do que aqueles que a não têm. A diferença torna-se mais difundida na população e pode chegar-se a um ponto em que os organismos com a diferença não podem cruzar-se com os organismos que a não têm. A subida do nível dos mares, o crescimento de uma linha de montanhas, ou qualquer outra barreira física insuperável pode dividir espécies em populações. Nos dois casos, dois grupos são reprodutivamente isolados e tornam-se espécies separadas. Porque estas espécies continuam a evoluir, as diferenças exteriores entre elas podem aumentar, diminuir ou manter-se as mesmas. Se as diferenças entre espécies relacionadas aumentam, e por isso as espécies passam a ser dissemelhantes, as suas evoluções são ditas divergentes. Se são espécies descendentes de um antepassado comum e continuam a parecer-se umas com as outras, são exemplo de evolução paralela.

Pode também suceder que espécies não relacionadas comecem a parecer-se uma com a outra, por vezes tão próximas, que se torna difícil considerá-las separadas. Isso é evolução convergente e ocorre quando há organismos que adoptam comportamentos de vida semelhantes em ambientes semelhantes. Evolução convergente significa que algumas plantas e animais em tipos particulares de ambiente, por exemplo em florestas chuvosas, desertos e regiões polares, se assemelham muito a outros em outras partes do mundo, mesmo quando as espécies não estão estreitamente relacionadas.

Ao conceito de evolução temos de acrescentar o conceito de adaptação. Quando as pessoas emigram para um país estrangeiro podem precisar de adaptar-se a condições novas e por vezes desafiadoras. Podem precisar de aprender uma língua nova, adaptar-se a convenções sociais, comer alimentos não familiares e proceder a muitas outras mudanças significativas para o tipo de vida a que estavam habituados.

evolução das espécies
imagem retirada de Daniel Marin

Adaptação tem também um significado científico semelhante, mas muito mais preciso. Um organismo que possua as características físicas que lhe dão uma vantagem sobre outros membros da sua espécie, no ambiente particular em que habitam, será mais bem-sucedido do que outros. Produzirá melhor descendência, e se os descendentes herdarem essa característica, também eles vão beneficiar das vantagens que ela lhes confere. Estes descendentes estarão mais bem-adaptados ao ambiente do que os indivíduos a quem a característica falta, e a característica fixar-se-á na população. Após algumas gerações os membros dessa população vão possuí-la. Pequenas diferenças que apareçam entre indivíduos resultam de mutações genéticas. A acumulação gradual destas mutações conduz ao aparecimento de novas substâncias.

Contudo, as espécies não duram para sempre. Por exemplo, espécies de mamíferos duraram um milhão de anos e espécies de invertebrados duraram onze milhões de anos. A formação de espécies, ou especiação, e a extinção ocorreram em todos os tempos, mas tem havido episódios em que um acontecimento tem causado o desaparecimento de um número grande de espécies num período curto. Há evidências de várias extinções em massa e muitos cientistas suspeitam de que estamos a entrar numa agora, neste caso resultante principalmente da ação humana. A seguir a uma extinção em massa, ficam disponíveis recursos abundantes para os sobreviventes. Vamos ver para onde nos leva esta extinção…

William Morris Davis e o ciclo geomórfico

No seu tempo, o desenvolvimento do relevo terrestre explicava-se através do relato de uma grande inundação bíblica. Em contraste, Davis desenvolveu uma teoria que explica a criação e destruição da paisagem, a que chamou ciclo geomórfico.

William_Morris_DavisFoi William Morris Davis (1850-1934) célebre geógrafo norte-americano, que propôs uma teoria geral que relaciona os agentes e os processos com os resultados que se observam na natureza. Esta teoria desenvolvia a ideia de que as montanhas e restantes acidentes geográficos são modelados pela influência de uma série de factores que se manifestam num ciclo que tem uma fase inicial, uma intermédia e uma final. O ciclo geomórfico de Davis, como é conhecido, inicia-se com o levantamento do relevo como consequência de processos geológicos. Os rios e a escorrência superficial começam a criar os vales em forma de V entre as montanhas – a etapa designa por juventude).  Durante esta primeira etapa, o relevo é mais escarpado e irregular. Depois, as correntes podem talhar vales fluviais – maturidade – e depois começar a serpentear , sobressaindo apenas suaves colinas – velhice. Finalmente, tudo chega a uma superfície quase plana, com a elevação mais baixa possível, chamados nível de base. Esta superfície foi batizada por Davis “peniplanície”, que significa “quase um plano”. Então, ocorre o “rejuvenescimento” se houver outro levantamento de montanhas e o ciclo é reativado e continua.

Não obstante, o mundo real nunca se ajusta a modelos deterministas, típicos do pensamento do início do século XX, e não é tão ordenado como os ciclos de Davis, assim como as suposições de Darwin não correspondem, de forma exata à dinâmica da evolução. Embora a teoria de Davis não explique todos os fenómenos geomórficos (de modelação terrestre) e os seus resultados na modificação da paisagem, provocou uma grande agitação no pensamento do seu tempo e ajudou a modernizar as ideias predominantes ao criar o subcampo da geografia atualmente conhecido como geomorfologia (que, por sua vez, hoje também é um subcampo da geologia).

A teoria de Davis tem aplicação em termos gerais e foi retificada, aperfeiçoada e validada através dos contributos de reconhecidos cientistas ao longo dos últimos anos. Willliam Morris Davis foi, sem dúvida, um dos maiores geógrafos académicos do século e, por isso, é conhecido como o “pai da geografia americana”.

Noite Europeia dos Investigadores – Science Slam by PubhD Porto

No próximo dia 29 de Setembro irá acontecer uma sessão especial do PubhD Porto.

A equipa do Pubhd Porto juntou-se à equipa da INOVA+ para divulgarmos a Ciência à Moda do Norte.

Marque na agenda, dia 29 de Setembro à noite no Centro de Desportos e Congressos Matosinhos e junte-se a este evento no qual jovens cientistas terão oportunidade de explicar os seus projectos de investigação, de forma descontraída e divertida e aproveite para fazer todo o tipo de perguntas

 

Como se Dividem as Células?

Foi ainda nos finais do século XIX que Walther Flemming se apercebeu da existência, no interior das células, de uma substância capaz de absorver corantes e que assumia inúmeras formas ao longo do tempo. Esta substância viria a ser apropriadamente apelidada de cromatina – essa, na altura ainda desconhecida, amálgama de DNA, proteínas e RNA. E o que Flemming observara, e que acabou por ilustrar no seu livro “Zellsubstanz, Kern und Zelltheilung” (1882), eram nada mais nada menos do que os cromossomas e as suas várias conformações ao longo do ciclo celular.

L0060921 Zellsubstanz, Kern und Zelltheilung
Legenda: Morfologia dos cromossomas ao longo do ciclo celular; ilustrações de Walther Flemming / Public Domain Imagem retirada do livro de Walther Flemming https://cellbiology.med.unsw.edu.au/cellbiology/index.php?title=File:Walther-flemming-mitosis-2.jpg).

O ciclo celular, o período de vida de uma célula, inclui a interfase (período onde a célula passa a maior parte do seu tempo, crescendo, desempenhando as suas funções específicas, e preparando-se para a etapa seguinte) e a divisão celular. Este processo de divisão celular é complexo e divide-se em várias etapas: profaseprometafasemetafaseanafase, e telofase (que perfazem a mitose) e a etapa final de citocinese, onde a célula original efetivamente se separa, gerando duas células-filhas. E como uma imagem vale mais do que mil palavras, convido-vos a assistirem à animação que se segue e, em 3 minutos apenas, descobrirem afinal como se dividem as células…

Animação “How Cells Divide? 3 Minutes on Mitosis” por Diogo Guerra / © Diogo Guerra. 2017

A Ciência do Leitor

Diogo Guerra, Médico Veterinário e Ilustrador Médico / www.diogoguerra.com

Diogo Guerra
Dr. med. vet.
Medical & Veterinary Illustration / Diogo Guerra /

A escassez de nutrientes pode travar a proliferação de células tumorais

photo
Sriram Subramaniam, National Cancer Institute (NCI), 2012/Wikimedia Commons)

O que se pode encontrar de semelhante entre o despontar da vida na Terra e a proliferação de células tumorais? A busca por comida.

Colin Goding, investigador no Instituto Ludwig de Investigação em Cancro, vinculado à Universidade de Oxford, no Reino Unido, está convencido de que o mesmo factor que motivou o primeiro ser vivo unicelular a movimentar-se pela Terra – há mais de 3 bilhões de anos – também é a razão pela qual algumas células tumorais se separam do tumor primário para colonizar outras partes do corpo: comida.

No seu laboratório, Goding demonstrou, em culturas de melanoma humano, que a falta de nutrientes desactiva a maquinaria de proliferação celular e faz com que as células tumorais adquiram um fenótipo invasivo.

“Estimammos que a mesma lógica funcione para a maioria dos tipos de cancro e, talvez, possamos encontrar meios de manipular esse mecanismo de sobrevivência celular para obter benefícios terapêuticos”, explica Goding.

Untitled
Colin Goding

No passado dia 10 de Agosto, Goding esteve em São Paulo, onde proferiu a palestra de abertura do 8º Workshop on Melanoma Models, e contou que o seu grupo tem usado o melanoma como um modelo para entender a progressão do cancro em geral.

“É um óptimo modelo porque conseguimos visualizar todos os estágios da doença. Podemos perceber quando as células produtoras de pigmento começam a invadir outros tecidos e formar metástases. Já em outros tipos de tumor, como pulmão ou pâncreas, quando o paciente apresenta sintomas e procura um médico a doença já se espalhou”, comentou.

Outro factor que tornou o melanoma um modelo interessante para o estudo do cancro, segundo Goding, foi a identificação, há mais de uma década, de um gene chamado BRAF, que se encontra alterado em metade dos casos da doença – emitindo estímulos para a proliferação descontrolada das células.

“Em poucos anos surgiram drogas capazes de inibir especificamente essa forma activa do gene BRAF com efeitos dramáticos. Doentes com múltiplas metástases respondiam muito bem. Porém, após alguns meses, as células tornavam-se resistentes. A pergunta, então, foi: por que essa resistência surge e o que podemos fazer?”

Transformação do fenótipo

De acordo com Goding, estudoS recentes têm mostrado que a resistência do melanoma ao tratamento está relacionada com a existência, dentro de um mesmo tumor, de subpopulações de células com fenótipos diferentes. Ou seja, embora possuam a mesma matriz genética, comportam-se de forma diferente.

“Algumas podem estar mais diferenciadas e agir como o tecido de origem [células produtoras de melanina], outras podem proliferar-se rapidamente fazendo o tumor crescer, outras podem estar com o ciclo mais lento e fenótipo invasivo e outras tornam-se dormentes e permitem que, mesmo após uma terapia bem-sucedida, a doença reapareça muitos anos depois”, explicou Goding.

Um dos objectivos do grupo britânico, portanto, tem sido compreender os factores que levam ao surgimento desses diferentes fenótipos. Segundo Goding, aspectos do microambiente tumoral, como a disponibilidade de nutrientes, oxigénio e a interacção com sinais emitidos pelo sistema imune, são fundamentais para a transformação.

A hipótese levantada pelo britânico é que, diante de uma situação de escassez de nutrientes, activa-se um mecanismo de sobrevivência em parte das células tumorais que as faz migrar para procurar comida noutro local.

“Além disso, acreditamos que determinados sinais emitidos por células do sistema imunitário – como as citocinas TNF-α [Fator de necrose tumoral alfa] e TGF-β [Fator de transformação do crescimento beta] – podem induzir um estado de pseudodesnutrição. Nesse caso, mesmo havendo abundância de nutrientes, esses sinais imunes associados à inflamação accionam o mesmo mecanismo induzido pela fome e fazem a célula migrar”, explicou o cientista.

Estudos já feitos por Goding com leveduras e também com células de melanoma confirmaram que existe um mecanismo de sobrevivência celular conservado ao longo da evolução. Quando passa fome, a célula reduz a sua procura por nutrientes para se adequar à oferta. Pra isso, ela desactiva os processos biológicos necessários para a síntese de proteínas e para a formação de novas células.

Porém, quando a célula tumoral consegue migrar para um novo ambiente, onde há abundância de nutrientes e ausência dos sinais imunes que induzem a pseudodesnutrição, ela volta a proliferar para formar uma nova colónia.

“Se conseguirmos enganar as células para fazer com que acreditem que os sinais de stresse já se foram embora, os procesos de fazer novas células volta a ficar activo e elas vão morrer porque a procura por nutrientes vai exceder a oferta”, avaliou.

A manipulação do estado fenotípico da célula tumoral, segundo Goding, poderia, em teoria, evitar tanto a formação de metástase como a ocorrência de futuras recaídas da doença.

Açores, um laboratório de Ciências da Terra

2810085195_3c53a17336

A Aldeia de São Lourenço, no Município de Vila do Porto, na Ilha de Santa Maria, Açores, é uma das candidatas a 7 Maravilhas na categoria “Aldeias Protegidas”. Se este concurso contemplasse o potencial para a investigação científica, os Açores naturalmente seriam vencedores. Todo este arquipélago é um laboratório para as Ciências da Terra.

Dado o seu enquadramento geotectónico, a região dos Açores apresenta importante actividade vulcânica e sísmica, bem documentada desde o povoamento destas ilhas, a partir de meados do século XV.

Assim, existem registos de 26 importantes erupções vulcânicas que ocorreram nas ilhas de S. Miguel, Terceira, S. Jorge, Pico, Faial e no mar entre elas. Destas 26 erupções, 12 foram subaéreas (S. Miguel, Terceira, S. Jorge, Pico e Faial), de natureza predominantemente efusiva. Contudo, há registo de erupções de natureza explosiva, nomeadamente as subaéreas ocorridas na ilha de São Miguel, em 1439, nas Sete Cidades, em 1563, e as erupções de 1444 e de 1630, localizadas na Caldeira das Furnas.

As últimas erupções importantes ocorridas nos Açores foram submarinas, nomeadamente, a erupção dos Capelinhos, em 1957/58, na extremidade ocidental da ilha do Faial e a erupção do “Vulcão Oceânico da Serreta”, entre 1998 e 2000.

A análise da idade geológica calculada para cada uma das ilhas parece mostrar que, em termos gerais, as ilhas mais afastadas da Dorsal Médio- Atlântica são as mais antigas. Neste contexto, a ilha de Santa Maria é a mais antiga do arquipélago (com cerca de 8,12 milhões de anos) e, pelo contrário, a ilha do Pico é a mais jovem (com cerca de 250 000 anos).

Por sua vez, a actividade sísmica associada às principais falhas activas existentes na região dos Açores manifesta-se geralmente sob a forma de um elevado número de microssismos (sismos de magnitude inferior a 3). Contudo, periodicamente, as ilhas açorianas são afectadas por sismos moderados a fortes, mas energéticos, que têm causado destruição e impactos económicos significativos. Após 1947, as principais crises sísmicas que afectam os Açores ocorreram nos anos de 1958, 1964, 1973/74, 1980, 1988/89 e 1998.

Tendo em conta a sismicidade que evidenciam, as ilhas do Açores podem ser agrupadas em 4 grupos principais:

– as ilhas de São Miguel, Terceira e Faial, de maior sismicidade;

– as ilhas Pico e São Jorge em que há, comparativamente, menor número de sismos sentidos e de menor intensidade;

– as ilhas Graciosa e Santa Maria, que evidenciam baixa sismicidade no contexto regional, com poucos sismos sentidos;

– as ilhas das Flores e Corvo, de reduzida sismicidade, fruto do seu enquadramento geotectónico, no seio da placa Norte-americana.

Em síntese, as ilhas dos Açores, de origem vulcânica, situam-se num quadro tectónico original, o que confere a este arquipélago uma geodinâmica muito activa, accionada pela energia interna da geosfera, nomeadamente ni que se refere a fenómenos vulcânicos e sísmicos.

 

Não se falou de Yoga no Ciência 2017

the-political-implications-of-ignoring-our-own-ignorance

 

Acreditando no relato que consta no artigo do Público intitulado “O Ciência 2017 voltou depois à Ciência” fica claro que o trabalho apresentado no evento Ciência 2017 intitulado “Ioga Ancestral de Bhárata/Índia, Desenvolvimento Pessoal, e Cidadania” não é sobre Yoga e não referiu qualquer fonte fiável na literatura védica (na qual assenta o Yoga). Baseou-se, antes, numa das muitas correntes personalistas sem qualquer base verídica e muito menos ancestral. O facto de ter havido um trabalho sobre uma balelice que usa a palavra ‘yoga’ só se explica, a meu ver, por esta moda recente das bolhas do ‘empreendendorismo’, do ‘mindfullness’, das ‘empresas cool’ que entram numa de evangelização com algo a que se chama yoga para vender. Schrödinger que teve a humildade intelectual suficiente para estudar os Vedas a sério e verificar a validade de muito do que lá vem, deve ter “dado voltas no túmulo” como se costuma dizer.

Por outro lado, também é verdade que qualquer técnica de yoga, que esteja referida na literatura original (vedas, hatha yoga pradipika, yoga sutras – com atenção às traduções – etc) já foi mais testada do que qualquer fármaco ou teoria científica. Segundo o último estudo, desde há aproximadamente 8000 anos. Ainda assim a Ciência, ou melhor, alguma ciência (já que esta é múltipla) continua a não atribuir validade aos vedas ou a essa mesma literatura. O que é normal porque existem diferentes tipos de validade, mas não vamos entrar em preciosismos epistemológicos neste texto.

Pessoalmente, não aceito tudo o que vem nos Vedas, mas sei que, no que respeita ao Yoga e suas técnicas, estas são válidas, com ou sem tubos de ensaio a prová-lo. Agora, quando a Ciência de massas ou a que tem o tubo de ensaio como deus único, decide pôr algo num dos seus fóruns, ao menos deveria ter o rigor que exige a outros sistemas de conhecimento quando decide falar desses mesmos sistemas. No caso, convém saber realmente o que é Yoga, para não dar banhos da cobra em Conferências nacionais com a dita “nata” da Ciência do burgo. Até porque se a intenção era inovar e mostrar um pouco de abertura epistemológica, podiam simplesmente ter explorado vários estudos científicos, por exemplo, dentro do tópico da relação da prática de yoga com a saúde física e mental. O Yoga não pretende ser Ciência, ainda que seja baseado num método e inclua técnicas. Mas mesmo o aspecto terapêutico do Yoga não promete curas. Propõe e pode proporcionar alívio de sintomas e uma maior capacidade de lidar com condições de saúde.

E só para que fique claro: em nenhuma literatura original, isto é, védica, do Yoga se diz que o Yoga cura cancros ou que não se devem tomar químicos. O Veda enquanto corpo de conhecimento tem um ensinamento central: eliminar o sofrimento humano. Não visa, portanto, eliminar ou promover mutações genéticas. Em nenhum sítio da literatura original do Yoga se diz o que foi dito nesta conferência do Ciência 2017.

Tristemente, isto aconteceu num dia com um dos simbolismos mais bonitos da tradição do Yoga: o dia de homenagem e de respeito e gratidão dos estudantes, aprendizes ou alunos, aos seus professores de yoga ou académicos.

Nota: A autora deste texto não assistiu à palestra apresentada no Ciência 2017, sendo este artigo baseado nos relatos presentes no artigo acima referido: https://www.publico.pt/2017/07/08/ciencia/noticia/o-ciencia-2017-voltou-depois-a-ciencia-1778184.

 

 

O Scientificus é um projecto de promoção da cultura científica, procurando aproximar a Ciência dos Cidadãos. Este projecto pretende ser um espaço independente, inovador, empreendedor e dinâmico de divulgação da Ciência.