Arquivo da categoria: Ciência e Sociedade

O acontecimento de 2017

Esta época do ano é caracterizada pelo balanço nas diferentes áreas da sociedade, elegendo-se as figuras nacionais e internacionais e os acontecimentos que marcaram o ano. Mais do que uma revisão do que se passou, estas listas deveriam procurar marcar tendências esperadas para o ano seguinte.

Na Ciência, a definição do acontecimento do ano vem com um lastro de importância maior do que em outras áreas porque este evento está na pole position para ganhar um dos Prémio Nobel da área da Ciência no ano seguinte.

A revista Science escolheu para 2017, como acontecimento do ano, a primeira observação da colisão de duas estrelas de neutrões. A colisão das duas estrelas, a 130 milhões de anos-luz, gerou ondas gravitacionais detetadas na Terra. Ondas essas que tinham sido previstas há mais de cem anos pelo físico Albert Einstein, mas foram detetadas diretamente pela primeira vez em 2015 (Prémio Nobel da Física em 2017), quando dois grandes buracos negros (zonas do Universo de onde nada pode escapar, nem mesmo a luz) chocaram.

colisao_duas_estrelas_de_neutroes_nsf_ligo_sonoma_state_university_a_simonnet12425594_base
Ilustração: NSF/LIGO/Sonoma State University/A. Simonnet

As estrelas de neutrões são os objetos de grande escala mais densos no universo conhecido. Embora tenham apenas cerca de 30 km de diâmetro, têm uma massa como a totalidade do sistema solar. Usando uma outra imagem, seria como comprimir toda da população humana no volume de um cubo de açúcar. As estrelas de neutrões são assim chamadas porque são quase inteiramente constituídas por partículas subatómicas chamadas neutrões. Normalmente, os átomos contêm neutrões e protões nos seus núcleos. No entanto, quando se formam estrelas de neutrões, a compressão é tal que a matéria se desintegra. Os eletrões e os protões combinam-se para formar mais neutrões, e a estrela torna-se uma bola gigantesca de partículas subatómicas combinadas. As estrelas de neutrões normais têm campos de força magnéticos que chegam a ter 50 mil milhões de vezes mais potência do que um magneto do frigorifico. Por vezes formam-se campos ainda mais potentes, cerca de 100 mil milhões de vezes mais forte, que poderiam desmagnetizar todos os cartões de crédito existente na Terra.

Esta é uma descoberta do tipo dois em um: pela primeira vez, foram detetadas as ondas gravitacionais que se geram na violenta dança cósmica entre duas estrelas de neutrões, e também pela primeira vez, foi captado, com recursos a dezenas de telescópios terrestres e espaciais, o brilho intenso e efémero que se gerou na colisão inevitável que se seguiu. Esta observação permite por um lado confirmar ondas gravitacionais utilizando pela primeira vez a luz (até agora só se tinham confirmado este tipo de ondas nas colisões entre buracos negros), e por outro lado, a verificação de que as colisões de estrelas de neutrões produzem ondas gravitacionais.

Aguardemos até ao início de outubro para verificar se o acontecimento de 2017 vai originar um Nobel.

Anúncios

Realidade Aumentada

É comum ouvir dizer que cada indivíduo analisa a realidade que o rodeia de acordo com os seus valores. Esta ideia, dando diferentes perspetivas à mesma realidade, levou à criação de uma área tecnológica, em franca expansão, que mistura mundos reais e mundos virtuais. Esta nova tecnologia recebeu o nome de Realidade Aumentada (augmented reality).

A Realidade Aumentada é uma tecnologia, que combina elementos do mundo real com elementos virtuais em 3D, permitindo a interatividade entre objetos (reais e virtuais) em tempo real. Mais especificamente, consiste na sobreposição – realizada por meio de algum dispositivo tecnológico – de objetos virtuais tridimensionais (gerados por computador) num ambiente real. Tem origem num campo específico das ciências da computação, que exploram a integração do mundo real com elementos virtuais ou dados criados por computador.

A realidade aumentada combina um software específico, por exemplo o utilizado para desenvolver o jogo, com equipamentos, como câmara digital e GPS. Diversas áreas têm beneficiado com a possibilidade de sobrepor a realidade virtual com o nosso campo de visão destacando-se: o turismo, onde a locais históricos têm adicionando características virtuais às imagens reais: o utilizador pode localizar monumentos históricos, moradas e outros locais; obter informação sobre as distâncias entre o mesmo e os objetos circundantes; reconstrução virtual de edifícios antigos; a ciência; os jogos virtuais, e ainda, a arte, por exemplo, quando o espólio de um museu não pode estar exposto na sua totalidade poder-se-á recorrer à criação de museus virtuais. Um destes caso é o Museu Guggenheim de Bilbao onde foi implementado, pela Siemens IT Solutions and Services, um sistema de realidade aumentada, no qual, os visitantes recebem informações sobre o espaço cultural, as suas exposições e são guiados pelo museu, tendo acesso a informações especiais do edifício

Esta tecnologia exige a existência de apenas três componentes básicos: objeto real com algum tipo de marca de referência, que possibilite a interpretação e criação do objeto virtual; câmara ou dispositivo capaz de captar e transmitir a imagem do objeto real; software capaz de interpretar o sinal transmitido pela câmara ou dispositivo.

Nos últimos anos têm se assistido ao aumento exponencial desta tecnologia para as mais diversas áreas, como sejam a medicina, a marinha mercante, a educação, a bioengenharia, a física ou a geologia. Vejamos alguns exemplos: prospeção em hidrologia, ecologia ou geologia, mostrando informações específicas ou mapas tridimensionais; dispositivos de navegação em diversas situações, como por exemplo carro ou aeronaves, através de visores dotados de realidade aumentada integrados ao capacete do usuário ou apoio a tarefas complexas em cirurgias.

A Realidade Aumentada não deixa de ser o resultado de um caminho tecnológico que, se não fosse por todos avanços que se incorporam nos smartphones e tablets que utilizamos diariamente, este conceito dificilmente teria chegado aos níveis complexos a que chegou.

É comum ouvir dizer que cada indivíduo analisa a realidade que o rodeia de acordo com os seus valores. Esta ideia, dando diferentes perspetivas à mesma realidade, levou à criação de uma área tecnológica, em franca expansão, que mistura mundos reais e mundos virtuais. Esta nova tecnologia recebeu o nome de Realidade Aumentada (augmented reality).

A Realidade Aumentada é uma tecnologia, que combina elementos do mundo real com elementos virtuais em 3D, permitindo a interatividade entre objetos (reais e virtuais) em tempo real. Mais especificamente, consiste na sobreposição – realizada por meio de algum dispositivo tecnológico – de objetos virtuais tridimensionais (gerados por computador) num ambiente real. Tem origem num campo específico das ciências da computação, que exploram a integração do mundo real com elementos virtuais ou dados criados por computador.

A realidade aumentada combina um software específico, por exemplo o utilizado para desenvolver o jogo, com equipamentos, como câmara digital e GPS. Diversas áreas têm beneficiado com a possibilidade de sobrepor a realidade virtual com o nosso campo de visão destacando-se: o turismo, onde a locais históricos têm adicionando características virtuais às imagens reais: o utilizador pode localizar monumentos históricos, moradas e outros locais; obter informação sobre as distâncias entre o mesmo e os objetos circundantes; reconstrução virtual de edifícios antigos; a ciência; os jogos virtuais, e ainda, a arte, por exemplo, quando o espólio de um museu não pode estar exposto na sua totalidade poder-se-á recorrer à criação de museus virtuais. Um destes caso é o Museu Guggenheim de Bilbao onde foi implementado, pela Siemens IT Solutions and Services, um sistema de realidade aumentada, no qual, os visitantes recebem informações sobre o espaço cultural, as suas exposições e são guiados pelo museu, tendo acesso a informações especiais do edifício

Esta tecnologia exige a existência de apenas três componentes básicos: objeto real com algum tipo de marca de referência, que possibilite a interpretação e criação do objeto virtual; câmara ou dispositivo capaz de captar e transmitir a imagem do objeto real; software capaz de interpretar o sinal transmitido pela câmara ou dispositivo.

Nos últimos anos têm se assistido ao aumento exponencial desta tecnologia para as mais diversas áreas, como sejam a medicina, a marinha mercante, a educação, a bioengenharia, a física ou a geologia. Vejamos alguns exemplos: prospeção em hidrologia, ecologia ou geologia, mostrando informações específicas ou mapas tridimensionais; dispositivos de navegação em diversas situações, como por exemplo carro ou aeronaves, através de visores dotados de realidade aumentada integrados ao capacete do usuário ou apoio a tarefas complexas em cirurgias.

A Realidade Aumentada não deixa de ser o resultado de um caminho tecnológico que, se não fosse por todos avanços que se incorporam nos smartphones e tablets que utilizamos diariamente, este conceito dificilmente teria chegado aos níveis complexos a que chegou.

arart-aplicativo-realidade-aumentada

GIF retirado de http://www.tecnoartenews.com/share/arart-aplicativo-de-realidade-aumentada-da-vida-a-obras-de-arte/

Galeno de Pergamo

 

images

A história da ciência médica europeia reúne muitos nomes de destacados cientistas. Sem dúvida, Galeno figura entre os primeiros da lista, pois os seus ensinamentos foram dominantes durante muitíssimo tempo.

Galeno escreveu o Methodo medendi, sobre a arte da cura, que foi o paradigma do mundo médico no decurso de quinze séculos. Entre os seus contributos, a literatura médica menciona o ter descoberto que o funcionamento da voz é controlado pelo cérebro, que a espinal medula comanda os músculos, que o sangue circula pelas artérias, que existem as válvulas do coração e as funções renais, e também demonstrou que a preparação de fármacos devia obedecer a procedimentos rigorosos destinados à sua conservação.

Este médico, nascido em Pérgamo, na Grécia, no ano 130 e, falecido por volta de 216, em Roma, cultivou a sua mente desde muito tenra idade e, uma vez que descobriu a obra de Hipócrates de Cos, nunca a abandonou. A lenda relata que num sonho do pai apareceu o deus da medicina, Asclépio, que vaticinou o destino de Galeno.

No tempo de Marco Aurélio II chegou a integrar o mundo da corte, onde estudou a peste antonina e dissecou animais, pois na Roma antiga não era permitida a dissecação de cadáveres humanos, o que conduziu a ideias um pouco distorcidas. Baseou a sua fisiologia no pensamento aristotélico em relação à natureza e, no de Platão, no que respeita ao princípio regedor da alma, a psyche, formado por três dimensões: uma que se aloja no cérebro, outra no fígado e a terceira no coração.

A partir desse postulado, existem três espíritos, e cada um corresponde a uma classe de alma: o vital, situado na região torácica, tem o coração e os pulmões como principais órgãos e, para o mundo antigo, esse espírito chegava através do sistema arterial, junto com o calor inato do coração, a todo o organismo e determinava a morte ou não de uma pessoa; o vegetativo ou natural, que corresponde aos órgãos da zona abdominal, e o animal, dominante na região cerebral, que influenciava a personalidade e se deslocava para o resto do corpo através dos nervos.

Esta personalidade da ciência médica ganhou popularidade, também, por recorrer a muitas plantas a que atribuía propriedades curativas, para extrair delas as substâncias que lhe serviam para preparar medicamentos. E mais, a estas misturas deve-se a atual denominação “galénica” que alude à ciência da preparação de medicamentos. Para fazermos uma ideia, basta pensar que um preparado de Galeno podia chegar a conter mais de 60 ingredientes. Entre eles, figurava um com pretensão de antídoto para qualquer doença. Este chamava-se teriaga e o ódio figurava entre os seus principais componentes. O curioso é que o mesmo preparado vigorou até ao início do século XIX.

Os princípios, a obra e os medicamentos de Galeno perduraram vários séculos. No Renascimento, as suas bases começaram a ser questionadas a partir das ideias renovadoras do anatomista Vesalio.

Dia Nacional da Cultura Científica /Aniversário Rómulo de Carvalho

 

Rómulo de Carvalho

Hoje Rómulo de Carvalho faria 111 anos! Parabéns António Gedeão!

Em 1996, o dia 24 de novembro – dia de nascimento de Rómulo de Carvalho – foi adotado pelo antigo, pelo antigo Ministro da Ciência e Tecnologia, José Mariano Gago, como dia Nacional da Cultura Científica, precisamente em homenagem a  Rómulo de Carvalho/António Gedeão, professor, divulgador de ciência e poeta.

Acredito que a Rómulo de Carvalho seja mais conhecido como António Gedeão e pelos seus poemas (provavelmente, Pedra Filosofal será o poema mais conhecido do poeta).

No entanto, não posso deixar de assinalar o seu papel enquanto professor e divulgador de ciência, faceta com que contactei numa visita de estudo que fiz a Braga – por volta de 1996/1997 – enquanto estudante do Ensino Secundário. Aí, visitei uma exposição de ciência que permitia que os visitantes pusessem as “mãos na massa” e fizessem experiências (os centros Ciência Viva ainda estavam a começar e aquele era um local onde nós poderíamos pôr em prática alguns conceitos aprendidos nas aulas de Físico-Quimica). Numa das bancadas de experiências, estavam os vídeos do Professor Rómulo de Carvalho e posso dizer-vos que os vídeos eram (são) excelentes: não só era utilizada uma linguagem que captava a atenção, mas que também nos permitia colocarmo-nos diversas questões e desenvolver o nosso espírito científico.

Desde essa altura, procurei saber mais sobre a vida de Rómulo de Carvalho que – tal como outros – nos mostrou que não basta saber de ciência. Se queremos contribuir para que o “mundo pul[e] e avanc[e]”, é fundamental comunicar e divulgar a ciência.

 

 

Deixo-vos agora com a “Lição sobre a água” :também uma bela lição:

Este líquido é água.
Quando pura
é inodora, insípida e incolor.
Reduzida a vapor,
sob tensão e a alta temperatura,
move os êmbolos das máquinas que, por isso,
se denominam máquinas de vapor.

É um bom dissolvente.
Embora com excepções mas de um modo geral,
dissolve tudo bem, bases e sais.
Congela a zero graus centesimais
e ferve a 100, quando à pressão normal.

Foi neste líquido que numa noite cálida de Verão,
sob um luar gomoso e branco de camélia,
apareceu a boiar o cadáver de Ofélia
com um nenúfar na mão.

 

 

Ainda somos responsáveis pelo futuro?

“Máquinas e biomáquinas: perspectivas filosóficas e cruzamentos científicos de um futuro incógnito e promissor” foi o tema abordado por João Relvas, neurocientista no Instituto de Investigação e Inovação em Saúde (i3S) e docente, num evento promovido pelo grupo Ciência, Religião e Conhecimento, liderado por João Paiva, químico e docente na Faculdade de Ciências da Universidade do Porto, onde o evento teve lugar, no passado dia 20 de Outubro.

Untitled
João Bettencourt Relvas, neurocientista. 

Se hoje as vinte mil léguas submarinas de Júlio Verne já não nos espantam perante as tecnologias que temos, o futuro reserva ainda muitos desafios, na opinião de João Relvas, nomeadamente: quanto às possibilidades relacionadas com a descoberta do cérebro eléctrico e dos novos implantes neurais e com as possibilidades de melhoramento cognitivo do cérebro.  Tecnologias recentes como a estimulação cerebral profunda que, apesar de ser uma cirurgia invasiva, permite estimular zonas específicas do cérebro através de eléctrodos ajudando, por exemplo, doentes com parkinson avançado, ou as interfaces cérebro-máquina (que possibilitam a comunicação entre o cérebro e uma máquina externa a ele) elevam ao mais alto nível a tendência humana em moldar a natureza de acordo com os desejos humanos.

“Num tempo em que necessitamos de utopias, será que estamos a criar uma distopia?”, questiona o cientista. E a questão desdobra-se em vários aspectos cuja reflexão se faz premente, tais como a histórica relação entre o «eu», o livre-arbítrio e a responsabilidade, a ideia de que a vida será uma dádiva, os perigos da eugenia, a justiça e equidade, a dignidade humana.

A intervenção do neurocientista foi comentada por Maria Manuel Jorge, especialista em Filosofia da Ciência, e ex-docente na Faculdade de Letras da Universidade do Porto, para quem a “aposta [em todas estas tecnologias e ‘tecnociência] correu bem, mas tem um preço. Como é que isto afecta como nos vemos e como vemos à vida?”, alertou. Com a tecnociência, e com a suposição de que a ciência pode fazer melhor do que a própria vida, “a sacralização da vida desaparece”.

Já numa perspectiva epistemológica, e olhando, por exemplo, para a Biologia, as quantidades massivas de dados com que se trabalha actualmente estão a mudar como a Ciência se faz. “Passam as ser as máquinas que constituem os dados e identificam os padrões”, sublinhou a oradora. E questiona ainda: “será uma arrogância nossa? Como é que os nossos poderes podem ter ultrapassado os nossos saberes?”. Maria Manuel Jorge finalizou o seu comentário chamando a atenção para uma situação que considerou “dramática” e que “obriga a investigação a mudar”. “Vivemos num panorama em que a ciência reflexiva foi substituída pela tecnociência e em que algum catastrofismo é substituído pelo optimismo tecnológico exarcerbado. Ao mesmo tempo, estamos a forçar quem abandonou as preocupações com a ética a ter de encaixar essa preocupação nos textos dos seus projectos de investigação sem saber como o fazer. Então, como trazer a reflexão aos indivíduos [na ciência] que estão na crista da onda?”, questionou.

Na troca de ideias que se seguiu, João Relvas realçou a importância da capacidade de escolha e de não sermos escolhidos perante as situações em que somos colocados, sabendo que “a realidade já ultrapassou a ficção”. Por outro lado, alerta o investigador, “há problemas que são, na sua incepção, interdisciplinares, pelo que aplicar sempre uma lógica cartesiana pode ser insuficiente”. Já quanto a este aspecto, Maria Manuel Jorge alerta para o facto de que o resultado, na prática, de se tentar esbater as fronteiras entre as disciplinas está a resultar numa grande improdutividade. Estamos ainda muito mal preparados”, conclu

Nobel da Química 2017

Ontem foi atribuído o prémio Nobel da Física a Rainer Weiss,  Barry C. Barish e a  Kip S. Thorne, pela sua contribuição decisiva na deteção e observação das ondas gravitacionais. Podem saber um pouco mais sobre as ondas gravitacionais aqui. Só uma curiosidade: Kip S. Thorne foi um dos principais consultares científicos do filme Interstellar! Aconselho a leitura deste texto “A Ficção Científica a ajudar a Ciência“.

Hoje foi atribuído o prémio Nobel da Química a Jacques Dubochet, investigador na Universidade de Lausanne (Suíça), Joachim Frank, investigador da Universidade Columbia (Nova Iorque) e Richard Henderson, investigador do Laboratório de Biologia Molecular do Conselho de Investigação Médica (Cambridge, Reino Unido). Estes 3 investigadores deram um relevante contributo para o desenvolvimento  da microscopia crioeletrónica, uma técnica que permite ver estruturas de biomoléculas em solução.

22154205_10154994374844103_8723502334424256905_n

 

proteina
Diferenças na observação de uma proteína antes e depois de 2013.

Com esta técnica poderá se conseguir conhecer a estrutura celular,  de maneira a aplicar à saúde. Conhecer a estrutura das proteínas envolvidas nas doenças humanas ou produzidas pelos agentes patogénicos (causadores de doenças) pode permitir criar fármacos que sejam mais eficazes no ataque a essas proteínas.

A título de curiosidade, o Prémio Nobel da Química em 2014, também foi para uma técnica de microscopia.

 

Nobel da Medicina e Fisiologia 2017

Três investigadores americanos foram hoje distinguidos com o Nobel de Medicina pelo seu estudo sobre os mecanismos moleculares que determinam os nossos ritmos biológicos.

Unknown.jpg

Vale a pena ler esta entrevista de Diogo Pimentel é um investigador português na Universidade de Oxford, ao Público. On line aqui.

Evolução de espécies

Ao longo de muitos milhões de anos, pequenas diferenças hereditárias entre populações de organismos conduziram ao aparecimento de espécies novas. Cada organismo possui uma pequena diferença e, ocasionalmente, uma delas permite aos organismos que a transportam, produzir mais descendência do que aqueles que a não têm. A diferença torna-se mais difundida na população e pode chegar-se a um ponto em que os organismos com a diferença não podem cruzar-se com os organismos que a não têm. A subida do nível dos mares, o crescimento de uma linha de montanhas, ou qualquer outra barreira física insuperável pode dividir espécies em populações. Nos dois casos, dois grupos são reprodutivamente isolados e tornam-se espécies separadas. Porque estas espécies continuam a evoluir, as diferenças exteriores entre elas podem aumentar, diminuir ou manter-se as mesmas. Se as diferenças entre espécies relacionadas aumentam, e por isso as espécies passam a ser dissemelhantes, as suas evoluções são ditas divergentes. Se são espécies descendentes de um antepassado comum e continuam a parecer-se umas com as outras, são exemplo de evolução paralela.

Pode também suceder que espécies não relacionadas comecem a parecer-se uma com a outra, por vezes tão próximas, que se torna difícil considerá-las separadas. Isso é evolução convergente e ocorre quando há organismos que adoptam comportamentos de vida semelhantes em ambientes semelhantes. Evolução convergente significa que algumas plantas e animais em tipos particulares de ambiente, por exemplo em florestas chuvosas, desertos e regiões polares, se assemelham muito a outros em outras partes do mundo, mesmo quando as espécies não estão estreitamente relacionadas.

Ao conceito de evolução temos de acrescentar o conceito de adaptação. Quando as pessoas emigram para um país estrangeiro podem precisar de adaptar-se a condições novas e por vezes desafiadoras. Podem precisar de aprender uma língua nova, adaptar-se a convenções sociais, comer alimentos não familiares e proceder a muitas outras mudanças significativas para o tipo de vida a que estavam habituados.

evolução das espécies
imagem retirada de Daniel Marin

Adaptação tem também um significado científico semelhante, mas muito mais preciso. Um organismo que possua as características físicas que lhe dão uma vantagem sobre outros membros da sua espécie, no ambiente particular em que habitam, será mais bem-sucedido do que outros. Produzirá melhor descendência, e se os descendentes herdarem essa característica, também eles vão beneficiar das vantagens que ela lhes confere. Estes descendentes estarão mais bem-adaptados ao ambiente do que os indivíduos a quem a característica falta, e a característica fixar-se-á na população. Após algumas gerações os membros dessa população vão possuí-la. Pequenas diferenças que apareçam entre indivíduos resultam de mutações genéticas. A acumulação gradual destas mutações conduz ao aparecimento de novas substâncias.

Contudo, as espécies não duram para sempre. Por exemplo, espécies de mamíferos duraram um milhão de anos e espécies de invertebrados duraram onze milhões de anos. A formação de espécies, ou especiação, e a extinção ocorreram em todos os tempos, mas tem havido episódios em que um acontecimento tem causado o desaparecimento de um número grande de espécies num período curto. Há evidências de várias extinções em massa e muitos cientistas suspeitam de que estamos a entrar numa agora, neste caso resultante principalmente da ação humana. A seguir a uma extinção em massa, ficam disponíveis recursos abundantes para os sobreviventes. Vamos ver para onde nos leva esta extinção…

Noite Europeia dos Investigadores – Science Slam by PubhD Porto

No próximo dia 29 de Setembro irá acontecer uma sessão especial do PubhD Porto.

A equipa do Pubhd Porto juntou-se à equipa da INOVA+ para divulgarmos a Ciência à Moda do Norte.

Marque na agenda, dia 29 de Setembro à noite no Centro de Desportos e Congressos Matosinhos e junte-se a este evento no qual jovens cientistas terão oportunidade de explicar os seus projectos de investigação, de forma descontraída e divertida e aproveite para fazer todo o tipo de perguntas