Todos os artigos de antmcosta

Docente e Investigador. Comunicador de Ciência.

Nobel da Medicina e Fisiologia 2017

Três investigadores americanos foram hoje distinguidos com o Nobel de Medicina pelo seu estudo sobre os mecanismos moleculares que determinam os nossos ritmos biológicos.

Unknown.jpg

Vale a pena ler esta entrevista de Diogo Pimentel é um investigador português na Universidade de Oxford, ao Público. On line aqui.

Anúncios

Evolução de espécies

Ao longo de muitos milhões de anos, pequenas diferenças hereditárias entre populações de organismos conduziram ao aparecimento de espécies novas. Cada organismo possui uma pequena diferença e, ocasionalmente, uma delas permite aos organismos que a transportam, produzir mais descendência do que aqueles que a não têm. A diferença torna-se mais difundida na população e pode chegar-se a um ponto em que os organismos com a diferença não podem cruzar-se com os organismos que a não têm. A subida do nível dos mares, o crescimento de uma linha de montanhas, ou qualquer outra barreira física insuperável pode dividir espécies em populações. Nos dois casos, dois grupos são reprodutivamente isolados e tornam-se espécies separadas. Porque estas espécies continuam a evoluir, as diferenças exteriores entre elas podem aumentar, diminuir ou manter-se as mesmas. Se as diferenças entre espécies relacionadas aumentam, e por isso as espécies passam a ser dissemelhantes, as suas evoluções são ditas divergentes. Se são espécies descendentes de um antepassado comum e continuam a parecer-se umas com as outras, são exemplo de evolução paralela.

Pode também suceder que espécies não relacionadas comecem a parecer-se uma com a outra, por vezes tão próximas, que se torna difícil considerá-las separadas. Isso é evolução convergente e ocorre quando há organismos que adoptam comportamentos de vida semelhantes em ambientes semelhantes. Evolução convergente significa que algumas plantas e animais em tipos particulares de ambiente, por exemplo em florestas chuvosas, desertos e regiões polares, se assemelham muito a outros em outras partes do mundo, mesmo quando as espécies não estão estreitamente relacionadas.

Ao conceito de evolução temos de acrescentar o conceito de adaptação. Quando as pessoas emigram para um país estrangeiro podem precisar de adaptar-se a condições novas e por vezes desafiadoras. Podem precisar de aprender uma língua nova, adaptar-se a convenções sociais, comer alimentos não familiares e proceder a muitas outras mudanças significativas para o tipo de vida a que estavam habituados.

evolução das espécies
imagem retirada de Daniel Marin

Adaptação tem também um significado científico semelhante, mas muito mais preciso. Um organismo que possua as características físicas que lhe dão uma vantagem sobre outros membros da sua espécie, no ambiente particular em que habitam, será mais bem-sucedido do que outros. Produzirá melhor descendência, e se os descendentes herdarem essa característica, também eles vão beneficiar das vantagens que ela lhes confere. Estes descendentes estarão mais bem-adaptados ao ambiente do que os indivíduos a quem a característica falta, e a característica fixar-se-á na população. Após algumas gerações os membros dessa população vão possuí-la. Pequenas diferenças que apareçam entre indivíduos resultam de mutações genéticas. A acumulação gradual destas mutações conduz ao aparecimento de novas substâncias.

Contudo, as espécies não duram para sempre. Por exemplo, espécies de mamíferos duraram um milhão de anos e espécies de invertebrados duraram onze milhões de anos. A formação de espécies, ou especiação, e a extinção ocorreram em todos os tempos, mas tem havido episódios em que um acontecimento tem causado o desaparecimento de um número grande de espécies num período curto. Há evidências de várias extinções em massa e muitos cientistas suspeitam de que estamos a entrar numa agora, neste caso resultante principalmente da ação humana. A seguir a uma extinção em massa, ficam disponíveis recursos abundantes para os sobreviventes. Vamos ver para onde nos leva esta extinção…

William Morris Davis e o ciclo geomórfico

No seu tempo, o desenvolvimento do relevo terrestre explicava-se através do relato de uma grande inundação bíblica. Em contraste, Davis desenvolveu uma teoria que explica a criação e destruição da paisagem, a que chamou ciclo geomórfico.

William_Morris_DavisFoi William Morris Davis (1850-1934) célebre geógrafo norte-americano, que propôs uma teoria geral que relaciona os agentes e os processos com os resultados que se observam na natureza. Esta teoria desenvolvia a ideia de que as montanhas e restantes acidentes geográficos são modelados pela influência de uma série de factores que se manifestam num ciclo que tem uma fase inicial, uma intermédia e uma final. O ciclo geomórfico de Davis, como é conhecido, inicia-se com o levantamento do relevo como consequência de processos geológicos. Os rios e a escorrência superficial começam a criar os vales em forma de V entre as montanhas – a etapa designa por juventude).  Durante esta primeira etapa, o relevo é mais escarpado e irregular. Depois, as correntes podem talhar vales fluviais – maturidade – e depois começar a serpentear , sobressaindo apenas suaves colinas – velhice. Finalmente, tudo chega a uma superfície quase plana, com a elevação mais baixa possível, chamados nível de base. Esta superfície foi batizada por Davis “peniplanície”, que significa “quase um plano”. Então, ocorre o “rejuvenescimento” se houver outro levantamento de montanhas e o ciclo é reativado e continua.

Não obstante, o mundo real nunca se ajusta a modelos deterministas, típicos do pensamento do início do século XX, e não é tão ordenado como os ciclos de Davis, assim como as suposições de Darwin não correspondem, de forma exata à dinâmica da evolução. Embora a teoria de Davis não explique todos os fenómenos geomórficos (de modelação terrestre) e os seus resultados na modificação da paisagem, provocou uma grande agitação no pensamento do seu tempo e ajudou a modernizar as ideias predominantes ao criar o subcampo da geografia atualmente conhecido como geomorfologia (que, por sua vez, hoje também é um subcampo da geologia).

A teoria de Davis tem aplicação em termos gerais e foi retificada, aperfeiçoada e validada através dos contributos de reconhecidos cientistas ao longo dos últimos anos. Willliam Morris Davis foi, sem dúvida, um dos maiores geógrafos académicos do século e, por isso, é conhecido como o “pai da geografia americana”.

O Homem de Piltdown

Uma mandíbula, uma parte de um crânio e um dente foram os vestígios fósseis encontrados em 1913 numa quinta de Piltdown, no sul de Inglaterra. Estes vestígios foram inicialmente motivo de grande alvoroço no mundo científico da época, mas acabariam por ser a fonte de um grande escândalo.

fossil-698609
Charles Dawson (imagem retirada desta página)

Charles Dawson, advogado, antiquário, colecionador de objetos raros e arqueólogo amador, apresentou-se perante a prestigiada Sociedade Geológica de Londres no outono de 1913 e declarou ter descoberto o Eoanthropus dawsoni, o “Homem de Piltdown”, o antepassado da humanidade, o elo perdido, numa quinta de Piltdown, na região de Weald, no sul de Inglaterra. Durante anos manteve-se vivo o debate sobre a origem destes vestígios, e a imprensa afirmou que muito provavelmente corresponderiam ao elo perdido, que denominaram Eoanthropus dawsoni (em honra do seu descobridor).

Em 1953, quando Dawson já tinha falecido, os investigadores descobriram que os vestígios tinham sido tingidos, limados, lascados e enterrados no poço onde acabariam por ser “casualmente encontrados” pelo advogado e colecionador. Tinham começado a colocar-se cada vez mais interrogações sobre a antiguidade e a origem desses vestígios. Por fim, o dentista A.T. Marston determinou que os dentes desse esqueleto correspondiam a um orangotango, o dente solto, a um macaco, e o crânio, a um ser humano (Homo sapiens): a partir de então, as análises do conteúdo em flúor dos ossos demonstraram que o enterramento tinha sido intrusivo, e concluiu-se ainda que a cor escura dos ossos se devia a um tratamento químico.

Contudo, a “descoberta” de Dawson teve o apoio de figuras importantes do mundo científico da época, como Arthur Smith Woodward (diretor do Departamento de Geologia do Museu Britânico de História Natural e presidente da Sociedade de Geológica) e do paleontólogo e filósofo jesuíta Pierre Teilhard de Chardin. E até mesmo de escritores de grande popularidade, como Sir Arthur Conan Doyle, vizinho de Dawson e pai literário de Sherlock Holmes.

Quem cometeu a fraude? E por que razão? O certo é que desde que o engano foi divulgado surgiram especulações de todo o tipo. Uma delas recorda que o único país onde nunca se tinham encontrado vestígios de hominídeos pré-históricos era a Grã-Bretanha, e propõe que é possível que Charles Dawson se tenha proposto resgatar a “honra britânica” criando uma das maiores fraudes científicas da história. Mas, independentemente de qualquer hipótese, a verdade foi para a tumba com o seu autor.

Sentido da visão

Todos os animais estariam perdidos se não pudessem captar com os sentidos grande parte do que acontece à volta. Sem a capacidade de receber estímulos provenientes do exterior, não poderiam caçar nem vigiar os seus inimigos, nem encontrar par para assegurar a sobrevivência da espécie. Os animais captam os estímulos exteriores por meio de células sensoriais e através de células nervosas enviam-nos ao sistema nervoso central, onde são elaboradas as respostas.

De todos os processos relacionados com a elaboração de sinais, o da visão é aquele que foi melhor estudado. Tanto no homem como nos restantes mamíferos, a luz atravessa a córnea, o cristalino, o corpo vítreo e duas camadas de células nervosas, antes de ser captada, na parte posterior do olho, pelas células fotossensoriais. Estas células contêm pigmentos que absorvem os quanta de luz.

O homem conta com dois grupos de pigmentos visuais, a rodopsina e três  variedades de iodopsina. Cada um destes pigmentos capta comprimentos de onda diferentes. A rodopsina absorve a luz de baixa densidade, como, por exemplo, a crepuscular. As células fotossensoriais que a contêm, transmitem apenas imagens a preto e branco. A iodopsina, pelo seu lado, é responsável pelas imagens a cor. Os quatro pigmentos possuem uma antena idêntica para captar os quanta de luz. Esta parte da molécula é um derivado da vitamina A e recebe o nome de cis-retinal. Os pigmentos diferenciam-se unicamente pelo elemento proteínico associado ao retinal, a opsina, responsável pela seleção do comprimento de onda = luz violeta, verde ou vermelha – que deve captar-se. Apenas os quanta dos comprimentos de onda que podem ser captados por estas moléculas são para nós luz “visível”. A gama alcançada vai de 400 a 720 nanómetros

As células que contêm rodopia chamam-se bastonetes, e cones as que contêm qualquer das três variedades de iodopsina. Cones e bastonetes estão irregularmente distribuídos pela retina. Na zona da retina com maior resolução – o prolongamento do cristalino em linha reta – abundam os cones, enquanto na periferia, isto é, até ao cristalino, aparecem, preferencialmente, bastonetes.

Tanto nuns como noutros, os pigmentos alojam-se em feixes formados por 1500 lâminas membranosas empilhadas que ocupam por completo, o interior das células fotossensoriais.

O processo visual propriamente dito, consiste em que as impressões ambientais captadas pelas células fotossensoriais são decompostas múltiplas vezes e, enquanto não se realiza toda uma série de comparações e abstrações, não se forma o que identificamos como “imagem”.

O primeiro passo está a cargo das células ganglionares da retina onde, de momento, se analisam os contrastes espaciais. A retina é formada por muitas centenas de campos receptivos de pequeno tamanho e forma arredondada onde estão contidas as células visuais. Cada um destes campos é composto por uma parte central que estimula o gânglio seguinte, e por uma camada exterior que provoca o efeito contrário, quer dizer, ao ser ativada, inibe o gânglio anterior. Outros campos receptivos reagem exatamente ao contrário.

O funcionamento combinado dos dois tipos de campos receptivos intensifica os contrastes entre os claros e escuros na imagem da retina.

Uma das ideias não menos interessantes é a reação dos animais às cores. Numa corrida de toiros a cor vermelha é uma imagem de marca. Contudo, esta cor só é vista pelos espectadores e não pelo toiro. Este é incitado pelos movimentos dos toureiros e não pela cor, pois os toiros, como quase todos os mamíferos, não distinguem as cores. Os seus olhos só contêm bastonetes, responsáveis pela visão a branco e preto, e não têm cone.

sessao7-som-luz-14-638

Fonte da imagem: https://pt.slideshare.net/jifonseca/sessao7-som-luz

As condições atmosféricas e os seres vivos

Na semana em que a meteorologia voltou a entrar em nossas casas através da televisões portuguesas, não deixa de ser interessante tentar compreender a relação entre os seres humanos e as condições atmosféricas.

Os seres humanos são animais de sangue quente, pelo que precisam manter o interior do corpo à temperatura constante de cerca de 37ºC. As variações muito acima desta temperatura podem conduzir à desidratação e a uma condição potencialmente fatal, a hipertermia; as variações muito abaixo disto podem causar ulceração pelo frio e hipotermia, uma deterioração física e mental progressiva. Num ambiente quente, o corpo humano dissipa o calor aumentando o fluxo sanguíneo para as extremidades. As condições atmosféricas especialmente quentes, ou a atividade física, vão desencadear a transpiração, em que a pele é arrefecida quando a transpiração evapora. Demora mais ou menos uma semana para que as pessoas se aclimatizem ao calor moderado, porque os seis mecanismos de transpiração e de circulação se tornam mais eficientes. Num ambiente frio, o corpo humano começa, no início, por conservar o calor contraindo os vasos sanguíneos que se encontram sob a pele. Muitas vezes este processo é acompanhado por arrepios. o que gera calor adicional aumentando o ritmo metabólico do corpo. No entanto, os seres humanos têm uma tolerância ao frio fraca e em geral são incapazes de se aclimatarem. Logo, dependem da roupa e do aquecimento artificial. Ao longo da história humana, o objetivo de grande parte das diligências científicas tem sido procurar meios que permitam aos seres vivos viverem com maior conforto no seu meio ambiente.

agitação-maritima

agitação marítima – imagem retirada de postal.pt

Esta relação Homem – Condições meteorológicas não se ficam apenas pela dimensão física, sendo, também, marcante para o progresso das civilizações. As condições climáticas favoráveis foram, geralmente, períodos em que a precipitação era abundante e fiável e as temperaturas amenas ou relativamente altas. Estas condições são ideias para o crescimento das culturas e criação de animais domésticos. Os alimentos excedentes podiam ser armazenados e grupos de pessoas começaram por reunir-se em aldeias que mais tarde se expandiram transformando-se em grandes cidades. Mas quando as condições climáticas menos favoráveis regressavam, muitas civilizações ruíam e muitas vezes abandonavam os seus territórios recém-conquistados.

O agravamento das condições climáticas numa parte do mundo muitas vezes coincidiu com a melhoria das condições numa outra região, pelo que há uma ligação significativa entre o clima e a migração humana.

Atualmente, o impacto do ser humano no clima é cada vez mais evidente pelo que iremos assistir, nos próximos anos, a alterações do clima local/regional significativas

Vida no leito das profundezas

O solo do fundo do mar ocupa 151 milhões de quilómetros quadrados da superfície da Terra. Isto representa 41 % dos oceanos da Terra e 29,5% da superfície do planeta. A maioria desta enorme extensão está coberta por excelentes sedimentos macios, acumulados em milhões de anos. Os depósitos do oceano consistem em biliões de conchas de organismos microscópicos, calcários e  sílica, e também partículas provenientes de erosão da terra. Há também pequenos fragmentos meteoríticos, chamados microtequites, nos sedimentos do fundo. As condições nas profundezas têm sido resumidas como profundas, negras, frias e com pouca comida. Esta restrição de suprimento alimentar e das temperaturas baixas provocam crescimento lento dos organismos-

A superfÍcie macia de sedimentos nas profundezas torna difícil os habitantes de superfícies grandes moverem-se nelas sem se afundarem, ou terem de usar muita energia quando tentam deslocar-se. A necessidade de poupar energia, para crescer e reproduzir-se. é uma pressão evolucionária forte num ambiente com escassez de comida.

Para sobreviver a estas condições, os seres vivos desenvolvem modificações nos seus organismos que passam por adaptações nos órgãos sensoriais, na cor ou na forma.

Órgãos sensoriais

É um paradoxo que na escuridão das profundezas, muitos animais tenham olhos com complexidade e sensibilidade extremas, para detectarem luminosidade muito fraca da superfície e ocasionalmente emissões de bioluminescência. Muitos animais têm também sentido olfactivo muito desenvolvido para detectar comida, ou companheiros. Os sentidos do tacto e do ouvido estão separados nos vertebrados terrestres, como os humanos, mas esta distinção é menos clara nas profundidades. Aqui, a água é, de longe melhor transmissor da pressão de ondas de frequência baixa do que o ar. O que designamos como sentido auditivo é, em muitos animais do fundo do mar, o sentido do tacto: eles detectam vibrações de outros animais. Muitos invertebrados ouvem usando pêlos ou antenas, e nos peixes as funções do sistema de “linha lateral” são como o nosso ouvido: pêlos sensoriais transformam movimentos microscópicos em impulsos nervosos. Muitos peixes produzem sons e assim podem também processar um sentido de audição tal como a compreendemos.

fossas das marianas
“Jelly-fish” na Fossa das Marianas (imagem retirada do eco4u

Cor

Os tipos de coloração dos animais das profundezas são uma resposta à necessidade de camuflagem, estratégia para caçar ou para evitar ser caçado. A cor serve muitas vezes para o animal se confundir como o meio circundante, de modo a não ser notado. Há frequentemente uma luz ambiente residual na zona mesopelágica superior do fundo do mar. É aqui que as alforrecas, os camarões e os peixes-pinha se encontram em vários graus de transparência. A cor muda de modo muito marcado nas partes profundas da região mesopelágica. Os peixes tornam-se prateados ou, nos níveis mais baixos desta região, negro-aveludado, para absorver o que de luz fraca possa estar presente. Nesta região, os invertebrados são tipicamente de cor laranja e vermelho, que pode ser parcialmente consequência de uma dieta rica em pigmentos vermelho e laranja. A luz vermelha está completamente ausente nessas profundidades, pelo que parecem negros ou cinzentos, quando iluminados pela luz azul ténue que penetra até esse fundo distante. Como não há luz na parte mais profunda do oceano,além da bioluminescência, a maioria dos animais não tem coloração forte.

Forma

Os peixes são um dos grupos principais de animais das profundezas e apresentam algumas das diferenças maiores de formas do corpo quando comparados como parente de águas baixas. Isto é possivelmente, uma consequência da escassez de comida e das estratégias que os peixes desenvolveram para lidar com ela. A perseguição ativa neste ambiente é energeticamente dispendiosa e, assim, a maioria dos peixes são predadores emboscados, movimentando-se muito pouco. Isto significa que os seus corpos não precisam de ser hidrodinamicamente eficientes. Podem ser grossos ou finos, longos ou curtos, com musculatura reduzida. A carne dos peixes de fundo é mole e aguada em comparação com a das espécies de águas baixas, o que é devido à falta de fibras musculares. Têm bocas grandes e dentes aguçados para assegurar que, nas ocasiões raras em que a presa é encontrada, não possa escapar.

É neste mundo escuro e frio, que começa cerca dos 200 m abaixo da superfície, que encontramos formas de vida que evoluíram em condições muito diferentes das que contactamos à superfície e a partir da quais podermos compreender melhor a vida no leito das profundezas.

Fármacos

Entre as virtudes da natureza, existe uma que raramente temos em conta: a sua comprovada capacidade curativa. Os efeitos benéficos das substâncias naturais derivadas de plantas, animais e minerais que nos rodeiam colaboram na tenaz insistência do Homem em resistir às doenças. A medicina, em conjunto com a física, a química e a biologia, conseguiu isolar essas substâncias para elaborar os fármacos e dar solução à dor e, inclusivamente, curar definitivamente uma doença. Por isso, quando nos dói muito a cabeça, estamos muito engripados ou sentimos uma dor abdominal que nos incomoda durante vários dias, o melhor é ir ao médico, que, na maioria das vezes, nos receitará um medicamento.

Quando isso acontece, confiamos que ao adquiri-lo e administra-lo no nosso corpo corrigiremos o estado de doença pelo qual consultámos o profissional. As bases desta confiança recaem nos complexos e extensos estudos prévios que se realizaram com a substância em questão, que certificam a sua segurança e a sua ação.

O desenvolvimento de fármacos compreende múltiplos aspetos onde intervêm cientistas de diferentes especialidades, e implica também vários anos de ensaios até que um médico possa receitá-lo no seu consultório. Em primeiro lugar, é preciso compreender a natureza e as manifestações da doença, entendendo os seus componentes ambientais e genéticas, e verificando se se encontram envolvidas outras entidades tais como os micróbios. Conhecido o fenótipo anormal que se deseja corrigir, é vital estudar como é possível a sua correção, e se para isso é necessário administrar substâncias não produzidas pelo indivíduo. É aqui que surgem os fármacos, esses compostos naturais ou artificiais que colaboram na normalização dos processos metabólicos, que ajudam a reparar tecidos e órgãos, que nos aliviam a dor, aumentam as nossas defesas ou matam os micróbios que nos invadem.

Onde obtê-los ou como produzi-los; como administrá-los; que efeitos benéficos produzem; quais os efeitos negativos; quanto duram os benefícios; são perguntas a que é necessário responder e que guiam as etapas experimentais no desenvolvimento de fármacos.

O ponto de partida da investigação farmacológica é a procura de uma substância que, em princípio, surta o efeito desejado, apesar de algumas das suas propriedades poderem ou inclusivamente deverem ser melhoradas. Os produtos deste tipo descobrem-se por casualidade, por intuição ou mediante uma procura sistemática.

Muitos dos novos caminhos terapêuticos devem-se à casualidade. O desenvolvimento dos diuréticos, por exemplo, sofreu um impulso decisivo ao descobrir-se, por acaso, que um composto de mercúrio com o qual se estava a tratar um paciente afetado por uma doença venérea, quadruplicava e até quintuplicava a secreção de urina.

“Um caso fortuito, pôs nas nossas mãos um preparado no qual descobrimos um efeito antipirético extraordinário.” Por estas palavras, começou um artigo publicado em 1867 na prestigiosa revista Centralblatt fur Klinische Medizin que se intitula “A antifebrina, um novo antipirético.” Nele se descreve qua ao confundir-se, por equívoco, naftalina com acetanilida, se descobriu que esta substância possuía propriedades antipiréticas insuspeitadas. Como é fácil supor, depois desta descoberta, intensificou-se a investigação no campo das substâncias antipiréticas e analgésicas.

Não obstante, em muitas ocasiões, o acaso por si só não vale nada se não está unido à intuição do investigador. A descoberta da penicilina constitui um exemplo típico. Em 1928, o bacteriologista inglês Alexander Fleming observou que num dos recipientes em que cultivou bactérias, se tinham formado também fungos não desejados e que em redor destas colónias apareciam zonas isentas de bactérias. Provavelmente outros investigadores ter-se-iam limitado a deitar fora esse recipiente. Fleming, pelo contrário, intuiu a importância do processo e decidiu identificar essa substância misteriosa produzida pelos fungos que impedia a propagação das bactérias. Foram necessários dezasseis anos de trabalho árduo, até que se conseguisse isolar a forma natural desse composto a que se chamou “penicilina”. Esta descoberta não foi obra de uma só pessoa, mas de muitos investigadores que trabalhavam na Universidade e na indústria farmacêutica.

Ainda que se observe grandes êxitos no passado e no presente da farmacologia, não é possível esquecer que ainda existem muitas doenças para as quais não há uma terapia eficaz.

O corpo humano e o espaço

A exploração espacial sempre despertou no ser humano um interesse muito forte, seja por questões científicas, ideológicas ou políticas. Quando Jules Verne, nas suas ficções, olhou para o Lua como um local que poderia ser conquistado pelo Homem, estava longe de imaginar que umas décadas mais tarde a sua história se iria concretizar. Serve isto para refletir sobre a ideia científica mais arrojada da história da humanidade: colocar um ser humano em Marte.

Um projeto desta dimensão, com este grau de complexidade e com esta dificuldade pode , aos olhos de muitos, ser uma quase utopia, sendo apenas possível no grande ecrã. Acontece que, atualmente, já existe uma variedade de ideias, caminhos e protótipos tecnológicos a serem testados, para dar corpo a este empreendimento cientifico e tecnológico.

Marte é o segundo planeta rochoso mais pequeno e o quarto a contar do Sol. Tem cerca de metade do tamanho da Terra e apresenta uma atmosfera muito fina de dióxido de carbono, calotas polares de gelo e neve carbónica e um sistema meteorológico muito ativo.

Esta aventura de realizar uma viagem a Marte divide-se em dois semi-projetos: primeiro fazer orbitar seres humanos em torno de Marte e em segundo lugar colocar seres humanos na superfície de Marte e construir uma colónia no planeta. Deixando de lado o segundo, porque se trata de objectivo que, se tudo correr e sem sobressaltos, ocorrerá depois da década de 40 deste século, foquemos a atenção no primeiro.

A viagem a Marte tem problemas de um complexidade extrema, a nível tecnológico e para o organismo humano, devido à ausência de gravidade e à exposição prolongada à radiação solar. Ainda que em Hollywood os filmes retratem uma realidade muito distinta, o organismo humano sofre bastante com a permanência prolongada no espaço. Quando falamos de uma permanência prolongada no espaço devemos ter em conta que uma viagem a Marte nunca demoraria menos de 3 anos, dos quais cerca de 500 dias seriam no planeta vermelho, uma vez que as oportunidades de viajar até Marte surgem a cada dois anos, aproximadamente, devido à posição do planeta relativamente à Terra e ao Sol.

A exposição do corpo humano à gravidade zero reflete-se nos ossos, com a perda de 1% de massa óssea por mês. A visão também é afetada, aparentemente porque líquido retido no cérebro pressiona os seus globos oculares. Ora, num cenário como este, os astronautas que pousassem em Marte iriam ter um visão desfocada e ossos quebradiços. Também a radiação representa um perigo, uma vez que durante a viagem os astronautas estariam vulnerareis à radiação proveniente das erupções solares e dos raios cósmicos. Estes últimos podem danificar o ADN e as células cerebrais, o que pode significar que os astronautas podem chegar a Marte menos inteligentes. Por outro lado, a permanência num espaço confinado, como seria a nave, durante um período tão longo poderá trazer problemas comportamentais que não se encontram totalmente estudados.

Por mais complexo e difícil que seja este desafio, cabe a esta geração honrar gerações de navegadores, de exploradores e de astronautas que com o seu empenho, arte, dedicação e sacrifício deram a conhecer novos mundos.